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Abstract— With increasing needs of fast and reliable commu-
nication between devices, wireless communication techniques
are rapidly evolving to meet such needs. Multiple input and
output (MIMO) systems are one of the key techniques that
utilize multiple antennas for high-throughput and reliable
communication. However, increasing the number of antennas
in communication also adds to the complexity of channel esti-
mation, which is essential to accurately decode the transmitted
data. Therefore, development of accurate and efficient channel
estimation methods is necessary. We report the performance
of machine learning-based channel estimation approaches to
enhance channel estimation performance in high-noise envi-
ronments. More specifically, bit error rate (BER) performance
of 2× 2 and 4× 4 MIMO communication systems with space-
time block coding model (STBC) and two neural network-based
channel estimation algorithms is analyzed.

Most significantly, the results demonstrate that a generalized
regression neural network (GRNN) model matches BER results
of a known-channel communication for 4×4 MIMO with 8-bit
pilots, when trained in a specific signal to noise ratio (SNR)
regime. Moreover, up to 9dB improvement in signal-to-noise
ratio (SNR) for a target BER is observed, compared to least
square (LS) channel estimation, especially when the model is
trained in the low SNR regime. A deep artificial neural network
(Deep ANN) model shows worse BER performance compared to
LS in all tested environments. These preliminary results present
an opportunity for achieving better performance in channel
estimation through GRNN and highlight further research topics
for deployment in the wild.

I. INTRODUCTION

With the increasing use of wireless communication in

many devices and applications, the need for fast and reliable

wireless communication has also rapidly increased. Multiple

input multiple output (MIMO) communications is a key

technology that can significantly increase the performance

of wireless communication by utilizing multiple transmitter

and receiver antennas at the same time. A major challenge

of a MIMO system is the necessity of accurate channel

information [1]. Channel estimation becomes more com-

plex when the number of antennas is increased. Inaccurate

channel information can significantly deteriorate the overall

communication performance. Thus, developing a method that

robustly estimates channel information is required to support

both current and future communication models (e.g., massive

MIMO) that utilize numerous antennas for communication.
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Wireless communication technologies, including most

channel estimation methods, have been developed based

on theoretical models with extensive mathematical anal-

ysis. Recently, neural network architectures have gained

immense popularity because of their excellent performance

in solving challenging tasks. Several wireless communication

studies [2]–[6] have tested the performance of neural network

models on channel estimation or modulation detection. To

this end, we analyze two different channel estimation mod-

els that utilize (1) a generalized regression neural network

(GRNN) and (2) a deep artificial neural network (Deep

ANN). Specifically, we consider MIMO channel estimation

as a regression problem and test the BER performance when

the channel matrix is estimated using these neural network

models. We evaluate the performance of these models using

2 × 2 and 4 × 4 MIMO communication with the space-

time block coding (STBC). We further compare the BER

performance with of channel estimation using an existing

least square (LS) channel estimation method and known

channel information. To this end, we investigate the impacts

of different training ranges for signal-to-noise ratio (SNR),

and different numbers of pilot signals for channel estimation.

The contributions of this study are twofold: (1) We show

the BER performance of two neural network-based regres-

sion models, GRNN and Deep ANN, on 2 × 2 and 4 × 4

MIMO channel estimation and (2) demonstrate the existence

of favorable training environments for a neural network-

based channel estimation model. The simulation models for

MIMO communication and the neural network models are

designed using the toolboxes in MATLAB.The evaluation re-

sults show that GRNN model can achieve high performance

in channel estimation, matching the BER values of a known-

channel communication, especially with sufficient number of

pilot bits (e.g., 8 bits). The analysis results also demonstrate

that training data from certain noisy environments (SNR

ranges of −10 to 0 dB and −10 to 10 dB) are effective

for training GRNN models compared to other SNR ranges

(e.g., −20 to 20 dB and −30 to 30 dB). More importantly,

models trained at small SNR ranges show similar BER

performance compared to that with the ground truth: known

channel matrix. The analysis results show the feasibility of

estimating the channel matrix through neural network models

and demonstrate that a certain range of noisy environments

(i.e., −10 to 10 dB SNRs) and numerous inserted pilots

are beneficial for channel estimation with neural network

models.







(a) 2× 2 MIMO with 2 Pilots (b) 2× 2 MIMO with 4 Pilots (c) 2× 2 MIMO with 8 Pilots

(d) 4× 4 MIMO with 2 Pilots (e) 4× 4 MIMO with 4 Pilots (f) 4× 4 MIMO with 8 Pilots

Fig. 3: Achieved Bit Error Rate (BER) from GRNN and Deep ANN models

Overall, the GRNN model, with [−10, 10] dB training,

shows a better channel estimation performance compared to

LS at the low SNR regime. The range of SNR values for

which GRNN outperforms LS depends on the number of

pilots (i.e., [−10, −5] dB for 2 pilots, [−10, 0] dB for 4

pilots, and [−10, 6] dB for 8 pilots). Other training ranges,

([−20, 20], [−30, 30], [−20, 0], and [−30, 0]) result in

performance loss compared to LS at all tested SNR values.

For 4×4 MIMO (Figs. 3(d-f)), similar observations are in

order. It is important to note that the GRNN model trained in

the [−10, 0] dB range results in better performance compared

to the [−10, 10] dB range, with 2 pilot signals (Fig. 3(d)).

However, performance degradation still occurs at 0 dB.

The most significant results of our evaluations can be

observed in Figs. 3(e-f), where 4 and 8 pilots are used.

The GRNN model trained in the [−10, 10] dB SNR range

shows almost identical performance with known channel

when using 4 or 8 pilots at all test SNR ranges. Moreover,

the performance enhancement is almost 1.5 dB compared

to LS method. Considering that 4 × 4 MIMO model will

collect more channel information compared to 2× 2 MIMO

model, this fact might relate to the high channel estimation

performance in 4×4 MIMO model compared to 2×2 MIMO

model.

Similar to the analysis with GRNN, various training envi-

ronments (e.g., different SNR ranges, pilot signals) are tested

for deep ANN model and the best performance was achieved

for the model trained in the [−10, 10] dB SNR range. In

neither 2× 2 and 4× 4 MIMO communication models does

deep ANN provide any clear performance enhancements

compared to LS method with respect to the different training

environments (Figs. 3). From all tested environments, deep

ANN model shows similar or lower channel estimation

performance compared to the LS method.

TABLE I: Processing Time Measurement

Models Data Size (bits) Training (sec) Test (sec)

GRNN (2× 2) 6 Million 19.18 2, 875.00

GRNN (4× 4) 6 Million 21.94 5, 764.00

Deep ANN (2× 2) 6 Million 3, 685.00 48.86

Deep ANN (4× 4) 6 Million 7, 878.00 60.24

Despite its remarkable performance for some combination

of SNR training ranges and number of pilots, GRNN suffers

from testing complexity, when operation in the wild is con-

sidered. In Table. I, the training and test durations for both

GRNN and deep ANN models are shown. It can be observed

that GRNN enjoys a significantly short training duration (0.3-

0.5% of deep ANN), whereas testing is comparatively longer.

This suggests that GRNN model may not be suitable for

operation in the wild and new methods that match GRNN

performance may be needed.

These results indicate that GRNN model achieves a better

performance compared to our deep ANN model, matching

known channel in certain scenarios, which is promising.

However, further investigation is necessary to measure the

general performance of deep neural network based channel

estimation models since deep neural network architecture

needs a huge amount of data for training and only one type

of deep neural model (deep ANN) is evaluated in this work.

V. CONCLUSIONS

We studied the use of neural networks in channel esti-

mation in noisy environments. We evaluated both a GRNN



and a deep ANN. Our results indicate that a GRNN model

has the potential to match known channel performance and

outperform the existing LS method for channel estimation.

GRNN was shown to be particularly strong for channel

matrix estimation in the low SNR regime.

First, a channel estimation process requires processing

complex numbers. We represent these complex numbers as a

pair of numbers rather than using all the information implicit

in a complex number. One existing solution for handling

complex numbers is using a neural network model that can

directly handle complex inputs [20]. An additional limitation

of our study is that the proposed channel estimation methods

have a limited range where they show improved performance,

i.e., mostly only observed in negative SNR environments.

This result might relate to the characteristic of GRNN

model which fully relies on the information of training data

for regression tasks. However, analysis results from this

study are not sufficient for specific reasoning and further

investigation on studying a relationship between specific

training SNR and specific test SNR is necessary to reveal

the optimal training environments for channel estimation.

Additionally, the deep ANN model in this study is designed

to reduce squared errors between estimated channel and

known channel during training process. Future work will

consider direct optimization of the bit error rate (BER).

Finally, we limit the architecture of a deep-learning model

as a stack of fully connected layers; however, there are

many different architectures, such as CNN and RNN, that

have performed very well in computer vision and language

processing. Additional studies on different types of neural

network models for channel estimation are also necessary

for further development.
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